Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1327190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435697

RESUMEN

Introduction: Endophytes refer to microorganisms residing within the endosphere of plants, particularly perennials, without inflicting noticeable injury or inducing obvious morphological variations to their host plant or host organism. Endophytic fungi, although often overlooked microorganisms, have garnered interest due to their significant biological diversity and ability to produce novel pharmacological substances. Methods: In this study, fourteen endophytic fungi retrieved were from the stem of the perennial plant Polianthes tuberosa of the Asparagaceae family. These fungal crude metabolites were tested for antagonistic susceptibility to Multi-Drug Resistant (MDR) pathogens using agar well diffusion, Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) assays. The chequerboard test was used to assess the synergistic impact of active extract. Results and discussion: In early antibacterial screening using the Agar plug diffusion test, three of fourteen endophytes demonstrated antagonism against Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococcus (VRE). Three isolates were grown in liquid medium and their secondary metabolites were recovered using various organic solvents. Eight extracts from three endophytic fungi displayed antagonism against one or more human pathogens with diameters ranging from 11 to 24 mm. The highest antagonistic effect was obtained in ethyl acetate extract for PTS8 isolate against two MRSA (ATCC 43300, 700699) with 20 ± 0.27 and 22 ± 0.47 mm zones of inhibition, respectively, among different solvent extracts. The extract had MICs of 3.12 ± 0.05 and 1.56 ± 0.05 µg/mL, and MBCs of 50 ± 0.01 and 12.5 ± 0.04 µg/mL, respectively. Antagonism against VRE was 18 ± 0.23 mm Zone of Inhibition (ZOI) with MIC and MBC of 6.25 ± 0.25 and 25 ± 0.01 µg/mL. When ethyl acetate extract was coupled with antibiotics, the chequerboard assay demonstrated a synergistic impact against MDR bacteria. In an antioxidant test, it had an inhibitory impact of 87 ± 0.5% and 88.5 ± 0.5% in 2,2-Diphenyl-1-Picrylhydrazyl and reducing power assay, respectively, at 150 µg/mL concentration. PTS8 was identified as a Xenomyrothecium tongaense strain by 18S rRNA internal transcribed spacer (ITS) sequencing. To our insight, it is the foremost study to demonstrate the presence of an X. tongaense endophyte in the stem of P. tuberosa and the first report to study the antibacterial efficacy of X. tongaense which might serve as a powerful antibacterial source against antibiotic-resistant human infections.

2.
Saudi J Biol Sci ; 31(3): 103937, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38352729

RESUMEN

Antimicrobial resistance (AMR) has emerged as one of the most serious worldwide public health issues of the twenty-first century. The expeditious rise of AMR has urged the development of new, natural effective therapeutic strategies against drug-resistant pathogens. Endophytic fungi, which inhabit distinctive environments like endosymbiotic relationships with plants, are gaining interest as alternative reservoirs for novel compounds that exhibit a broad range of chemical diversity and unique modes of action by releasing a variety of secondary metabolites with antimicrobial properties. The objective of the current research was to isolate and identify endophytic fungal species from leaves of Tradescantia pallida and to investigate their antagonistic effects on Multi-Drug-Resistant human pathogens. Endophytic fungus TPL11 and TPL14 showed maximum inhibition in agar plug and agar well diffusion assay. The ethyl acetate crude extract effectively suppressed growth of MRSA (Methicillin-resistant Staphylococcus aureus) ATCC 43300,700699 strains and VRE (Vancomycin-resistant Enterococcus) with the Inhibition zone of 22 ± 0.05, 23 ± 0.11 and 24 ± 0.11 mm respectively with minimum inhibitory concentration (MIC) of 3.125 µg/mL. Whereas TPL11 fungus revealed antibiosis of 22 ± 0.05 and 21 ± 0.15 mm against MRSA(ATCC 43300,700699) and 24 ± 0.05 mm for VRE with MIC of 6.25,3.125 and 1.56 µg/mL respectively. The MIC (Minimum inhibitory concentration) index further confirmed that both the extracts were bacteriostatic against MRSA and bactericidal against VRE. The isolates TPL11 and TPL14 were identified as Fusarium oxysporum and Nigrospora sphaerica by 18S rRNA internal transcribed spacer (ITS) sequencing. To our insight, it is the first report to reveal the presence of F.oxysporum and N.sphaerica in T.pallida and their antibacterial activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...